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Abstract 

 

In the subtropical thicket biome of the Eastern Cape province of South Africa, heavy 

browsing by goats, which, remove shrub biomass more rapidly than it is replaced, transforms 

the dense closed-canopy shrubland into an open savanna-like system . This transformation 

causes a lot of changes, among which, soil fertility depletion. 

This document presents a project dealing with organic carbon, iron oxides, and clay content 

assessment, in the degraded thicket biome, through the combination of soil spectroscopy and 

partial least square regression (PLSR) techniques. The study area is a transect crossing in 

direction south east-north west the Eastern Cape province of South Africa, from latitude -

33.57 to -32.59 and longitude 25.38 (eastern extreme) to 25.26 (western extreme). The study 

area has been selected based on a GIS analyses, realized overlayng Vegetation Type, Rainfall 

and Topografy data sets. 113 points have been visited over a distance of 130 Km. At every 

point field spectroscopy measurements have been realized and soil samples of the first cm 

(topsoil) and of the 0-20 cm have been collected. The soil samples have been chemically and 

spectrally analyzed.  The present study models the relationships between soil spectral 

reflectance’s, measured in situ and in the laboratory, and the soil parameters taken in 

consideration. Results indicated as soil stoniness  is an important variables to consider for the 

soil properties prediction models creation. The PLSR models developed with laboratory and 

field spectra offered very good results for the prediction of OC (Calibration and validation 

R
2
> 0.7, RMSEV<0.6), and mediocre results for the [Fe] prediction (RMSEV always >0.55). 

The clay content prediction models production is at a preliminary stage. Based on this 

research, future studies, based on the up-scaling process of the obtained regression models to 

air-borne and space-borne HyperSpectral device, will be realized. 

 

1. Introduction 

 

The estimation of soil properties, such as 

organic carbon (OC), iron oxides, and clay 

contents, are important not only to quantify 

soil fertility, but also basic factors to 

understand the soil capability to resist to 

phenomenon of land degradation. 

Shepherd and Walsh (2002) pointed out 

the tremendous need for new techniques to 

measure soil properties that are faster and 

cheaper than the time consuming and 

expensive conventional soil laboratory 

methods. 

In the last years, it has been shown that 

spectroscopy in the visible-near infrared 

(VNIR) regions offers a rapid, inexpensive 

and non destructive technique to quantify 

soil properties, with comparable quality; 

moreover VNIR spectroscopy, requiring 



less sample preparation, with less or no 

chemical reagents, is highly adaptable to 

automated and in situ measurements, and 

has the potential to analyze various soil 

properties simultaneously (McCarty et al., 

2002; Viscarra Rossel et al., 2006). 

For example, under laboratory conditions, 

coupling visible-near-infrared (VNIR) 

spectroscopy with multivariate calibration, 

can accurately determine the organic 

matter (Reeves et al., 2002; Salgo et al., 

1998) and clay content (Ben-Dor et al, 

1995; Kooistra et al, 2001) of the soil. 

Most VNIR studies are conducted under 

controlled laboratory conditions, but 

investigations done in situ (Daniel et al., 

2003; Kooistra et al., 2003) have produced 

promising results, allowing the 

development of models that can be 

extended to data from airborne and space-

born hyperspectral imaging spectrometers, 

favouring the estimation of soil parameters 

for large areas instead of just point 

measurements. 

The objective of this study is to calibrate 

and validate multiple regression models for 

the prediction of soil OC, iron oxides and 

clay content, through the application of soil 

spectroscopy techniques, along a transect 

crossed in the subtropical thicket biome 

(STB) of the Eastern Cape Province of 

South Africa 

The STB of South Africa is centred in the 

south-western part of the Eastern Cape 

Province (33
o
S, 25

o
E). 

The vegetation is characterized by a matrix 

of succulent shrubs (e.g. Portulacaria 

afra), spinescent shrubs (e.g. Azima 

tetracantha, Gymnosporia polycantha, 

Putterlickia pyracantha, Rhus longispina) 

and low-growing trees (<5 m) (e.g. Pappea 

capensis, Euclea undulata, Schotia afra) 

(Skead 1987; Kerley et al. 1999). 

Despite a long association with indigenous 

large herbivores (Midgley 1991; Kerley et 

al. 1995), thicket is surprisingly sensitive 

to injudicious pastoralism (Stuart-Hill 

1992). During the 20
th

 century, heavy 

browsing by goats transformed the dense 

closed-canopy shrubland into an open 

savannah-like system with a cover of 

ephemeral grasses and forbs. 

This transformation caused a lot of 

changes, as the reduction of available 

water due to the diminishing below-ground 

biomass, the extreme carbon storage 

decrease due to the frequent fires (avoided 

by thicket vegetation) and the permanent 

plant cover degradation (causing soil 

temperature boost), and the crushing of the 

soil structure (Mills and Fey, 2004). 

In order to arrest these degradation 

processes, the subtropical thicket 

restoration project (STRP), initiated by the 

Working for Woodland program of the 

South African Government, points to re-

establish the vegetation mosaic and the soil 

fertility level, developing cost effective 

methods to check, for example, soil 

components content monitoring. 

This paper presents the results of a study 

developing soil properties small scale 

prediction model, as the base research for 

future up-scaling processes, to all the 

subtropical thicket biome, will be realized 

with air-borne and space-borne 

hyperspectral data collection campaigns. 

 

2. Methodology 

2.1 Study area 

The study area is a transect crossing in 

direction south east-north west the Eastern 

Cape province of South Africa from 

latitude -33.57 to -32.59 and longitude 

25.38 (eastern extreme) to 25.26 (western 

extreme). The selection of the study area 

was based on a GIS analyses which took in 

consideration three available datasets: 

Vegetation Type, Rainfall and Topografy. 

Vegetation type  and topography datasets 

refers to the STB, giving 21 vegetation 

types, and an altitude range from 100 to 

1100 m a.s.l. (11 classes), respectively. 

Rainfall dataset covered the full Eastern 

Cape province giving a rainfall range 

between 200 to 1000 mm/yr (8 classes). 

The three datasets have been overlayed, 

obtaining a stratified map, with 31 biome 

classes. The transect covered 21 out of 31 

biome classes.113 points have been visited 

over a distance of 130 km (figure 1). 



The choice to select a transect as study 

area, along the STB, was based on i) the 

possibility to cover the biggest possible 

number of classes originated with the GIS 

analyses, and ii) on the future flight 

campaign, for the collection of 

hyperspectral data,  which will follow the 

same line traced by the studied transect; in 

fact, the next step will be to use the soil 

spectral library                             created 

for this project, to build soil properties 

prediction models, which will be up-scaled 

to airborne hyperspectral data.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1: map of the study area 

            

2.2 Data collection 

The data, used for the prediction models, 

have been collected during the soil 

sampling and the field spectroscopy 

campaigns. 

 

2.2.1 Soil sampling campaign (SSC) 

During the SSC, 113 soil samples have 

been collected according to the following 

scheme: 

a 20x20x20 cm hole has been digged, the 

soil collected in one bag, well 

homogenized and divided in two bags, one 

with soil destined to soil chemical 

analyses, and one for soil laboratory 

spectral analyses. 

As stated before, the soil collected was 

referred to a depth up to 20 cm, but in 

some cases, due to shallow stones, it was 

not possible to reach the 20 cm depth. 

Land use, vegetation type, soil properties, 

and root content have been estimated, for 

very visited point 

 

2.2.2 Field spectroscopy campaign 

(FSC) 

The FSC characterized the second part of 

the fieldwork. 

One month after the SSC, 111 plots, out of 

113 sampled during the SSC, have been 

visited  to collect with an ASD Fieldspec-

Pro radiometer, in 1 nm steps in the 350-

2500nm wavelength range, soils spectral 

reflectance, using a contact probe device in 

order to eliminate the effect of vegetation 

on the soil spectra collected. 

For every plot, a 50x50 cm plot has been 

defined, and ten spectral measurements 

have been collected, 5 with stones layer 

and 5 without. The five measurements, to 

repeat twice, followed the scheme 1 in the 

centre and four at the corner of the plot.  

Afterwards, from the same spot, a sample 

has been taken from the upper surface (till 

1cm), homogenized, and divided in two 

bags, one for chemical analyses and one 

for laboratory spectral analyses. 

 

2.3 Soil samples analyses 



All the soil samples collected during SSC 

and FSC have been chemically analyzed in 

order to establish OC, iron oxides and clay 

contents. 

OC was determined using the Walkley and 

Black method (Walkley and Black, 1934). 

The mechanical clay content has been 

identified with the segmentation procedure 

(grain size<2mm) (Baize, and  Jabiol, 

1995), while the iron content has been 

assessed measuring the concentration of 

the dithionite-extractable iron oxides 

(Agbnenin, 2003).  

The same samples collected during SSC 

and FSC have been spectrally measured 

under laboratory controlled conditions, 

with the same spectrometer used in the 

field. The topsoil samples have been 

analyzed with and without stones, in order 

to determine the influence of the stone 

layer on the soil  spectral reflectance, as 

assessed with the field spectrometer, while 

the 0-20cm soil samples have been 

analyzed without stones. The samples 

without stones have been analyzed after 

creating sub-sampling portions of the 

ground (<2 mm soil, ~20 g) (Viscarra-

Rossell, 2005). All the samples have been 

illuminated with two-quartz halogen lamps 

(1000 W each), mounted on a tripod of 

zenith angle of 30
0
. The reflected light has 

been assessed in nadir position. 4 

measuments have been taken, rotating  

clockwise the sample of 90
0
. 

 

2.4 Models construction 

All the spectra collected in the field and in 

the laboratory have been corrected for the 

ASD “jump” at 1000 nm (additive 

correction method), for spectralon 

reflectance, and averaged for subsequent 

proceedings. 

Based on chemical analyses results, the 

dataset has been divided in training (2/3) 

and test set (1/3). 

Prior to performing the statistical analyses, 

spectra from 350 to 399 nm, from 796 to 

814 nm, and from 2401 to 2500 nm have 

been excluded, as insensitive or influenced 

by artefacts produced by spectrometer 

(Viscarra-Rossel et al., 2006). 

Several pre-processing techniques, 

commonly used in soil spectroscopy, have 

been applied for the enhancement of 

spectral features. Calibration models for 

OC, iron oxides, and clay content have 

been developed both without pre-

processing and applying several data 

manipulation:  transformation of 

Reflectance (R) spectra in log (1/R); 

spectral normalization performed using 

multiplicative spectral correction (MSC) 

(Geladi et al., 1985); random noise 

reduction and signal to noise ratio (SNR) 

improvement realized using the Savitzky-

Golay filter (Savitzky and Golay, 1964), 

with a second order polynomial fit and a 

variable window size of either 3, 6, and 10; 

spectral resolution enhancement and 

background effect elimination with first 

derivative application; data pre-treatment 

using Mean-Centre function. 

Once data pre-processing has been 

completed, the models have been 

developed using Partial Least Square 

Regression (PLSR) techniques (Cozzolino 

and Moron, 2003). The number of factors 

to take in consideration for the PLSR 

analyses has been decided based on a leave 

one-out cross-validation (CV) approach to 

the training set (Reeves et al., 2002). For 

the selection of an optimal, parsimonious 

PLSR model different factors have been 

taken into account: the root mean squared 

error of the cross validation (RMSECV), 

for the accuracy of CV; coefficient of 

determination of the cross validation 

(R
2
CV) (Wold and Sjöström, 2001); 

Akaike Information Criterion (AIC), 

representing the variability in the data 

without causing it to overfit (Li et al., 

2002); the smallest possible number of 

factors. 

The test set has been used for the models 

validation and; R
2
 between measured and 

predicted values for the soil parameters, 

and root mean square error of the 

validation (RMSEV) have been used to 

evaluate the established model (Kooistra et 

al., 2003).  

For topsoil samples, superficial stoniness 

effect on spectral reflectance, has been 



tested for both laboratory and field spectral 

data. 

Models accuracies have been tested both 

including and excluding water absoprtion 

bands (WAB) in all the spectral datasets. 

ParLes 3.1 is the software used to develop 

the models (Viscarra-Rossel, 2008). 

 

3. Results and discussion 

 

3.1 Chemical analyses  

The chemical analysis results for topsoil 

(table 1) and 0-20cm (table 2) samples 

show wide ranges of 

concentration. This 

explains the choice 

to create 3 different 

training and test set 

for both topsoil and 

0-20cm soil samples 

and to build 

independent 

prediction models 

for the three 

analyzed properties. 

Quite good 

correlations exist 

between OC and 

Iron  

oxides concentration 

([OC], [Fe])  in 

topsoil and 0-20cm 

layer, indicating that topsoil could be 

representative for the deeper layer for these 

two properties (table 3). The weak 

correlation between Topsoil and 0-20cm 

clay concentration [Clay] could be caused 

by several factors as land-use, 

characterized in this area by either goat 

farming or game reserve activities.  Soil is 

not undergone to intense ploughing 

activities, which could cause the stability 

of [OC] and [Fe] from Topsoil to 0-20cm, 

but significant differences of [Clay], 

favoured by alluviation deposit 

phenomena, and constant transport of 

small particles from the topsoil till the 

under layer. 

 

 

 

3.2 Interpretation of soil spectral 

reflectance. 

In order to resume the differences of 

spectral reflectance between i) laboratory 

and field spectra, ii) topsoil and 0-20 cm 

soil samples, and iii) samples with and 

without stones, mean spectra have been 

calculated (fig. 2).  

 

 

Table 1: topsoil chemical analyses 

results               Table 2:0-20cm chemical 

analyses results                                                        

Topsoil 

OC% Plot Clay% Plot Fe% Plot 

0.18 39 0.90 18 0.73 18 

0.21 35 1.10 85 1.35 17 

0.21 85 1.90 10 1.48 10 

0.22 18 1.92 106 1.48 106 

0.24 65 1.94 56 1.53 24 

0.24 91 2.93 17 1.53 47 

0.25 36 2.94 54 1.53 64 

0.25 106 2.94 110 1.63 31 

… … … … … … 

… … … … … … 

4.21 34 23.49 82 4.10 35 

4.32 6 26.25 98 4.18 3 

4.32 32 26.92 97 4.18 37 

5.92 33 31.45 68 4.25 33 

5.92 47 32.25 60 6.43 1 

6.03 78 39.15 26 6.90 26 

 

0-20 cm 

OC% Plot Clay% Plot Fe% Plot 

0.2 65 3.94 85 1.40 15 

0.21 17 4.02 46 1.48 21 

0.22 37 4.93 10 1.50 31 

0.23 39 4.95 17 1.53 86 

0.24 18 5.04 20 1.73 92 

0.29 10 5.21 88 1.80 23 

0.32 24 6.14 41 1.80 30 

0.32 85 7.01 110 1.80 32 

… … … … … … 

… … … … … … 

3.29 6 26.80 86 4.45 35 

3.55 34 27.58 55 4.63 4 

3.56 31 33.37 82 4.63 8 

3.6 28 36.95 78 5.03 3 

4.82 32 39.07 103 5.05 36 

5.05 33 44.60 7 7.28 1 



Table 3: Pearson correlation coefficient 

between topsoil and 0-20 cm OC, Fe, 

and clay content 

Pearson 

Correlation  

Coefficient 0-20 

Topsoil OC Fe Clay 

OC 0.77 -0.02 0.17 

Fe 0.14 0.68 0.12 

Clay 0.30 0.03 0.28 

 

The soil spectra measured on the samples 

where stoniness is not considered, show 

higher levels of reflectance and less 

absorption peaks than the samples 

measured including the stones 

In particular, it is quite important the 

difference between the topsoil field 

reflectance without stones  

(tfnos) and the same with stones (tfs) 

(fig.2), indicating that, in order to build a 

strong prediction model, for any type of 

soil property, stoniness should be a factor 

to include. 

 

Figure 2: Mean laboratory and field 

spectra obtained from topsoil and 0-

20cm soil samples  

 
 

The type of stoniness present in the STB is 

characterized by small (average diameter < 

2cm) dark stones, covering the topsoil. 

Especially in an up-scaling scenario, 

stoniness could be an important variable, 

because it causes a significant reduction of 

light reflected and detected by the 

spectrometer. 

The highest reflectance value is detected 

under laboratory conditions and without 

stones (tlnos). The difference between 

tlnos and tfnos is smaller than the 

expected, probably due to the contact 

probe device implementation, which 

reduces the gap between lab and field in 

terms of light stability, as proofed by the 

similar reflectance values of tfnos and 0-20 

cm laboratory spectra (0-20). As expected, 

the average tfs spectra values are sensibly 

lower than the topsoil laboratory spectra 

with stones (tls), indicating the higher 

sensibility of the instrument to stones in 

the field than in the laboratory. 

 

3.3 Calibration and validation of 

prediction models 

 

3.3.1 OC 

Calibration and validation of OC 

prediction models produced the results 

resumed in table 4 

The 0-20cm calibration and validation 

models produced equal accuracy both with 

and without WAB, indicating a R
2
 higher 

than 0.8. In both cases the best models 

have been produced with the same data 

manipulation. 

Topsoil laboratory no stones (TLNS) 

prediction model calibration gave a 

RMSECV of 0.458, slightly lower 

compared with the same model produced 

excluding WAB, which at the same time, 

with 4 factors, selected for the PLSR, 

produced better results in validation phase. 

Both models, constructed after the same 

data manipulations, do not indicate 

remarkable accuracies´ differences (table 4

0-20: 0-20 cm samples mean laboratory spectra; TFNOS: topsoil samples  

mean field spectra without stones; TFS: topsoil samples mean field  

spectra with stones; TLNOS: topsoil samples mean laboratory spectra 

 without stones; TLS: topsoil samples mean laboratory spectra with stones 

 

 

Table 4: calibration and validation of the OC prediction models 

spectral data data manipulation Calibration Validation 

  

traini

ng 

te

st 

R 

to 

De-

noisi

differentia

tion 

Pretreat

ment 

R
2
C

V 

RMSE

CV 

PLS

R R
2
 

R
2
a

dj 

RMS

EV 



Lo

g 

(1/

R) 

ng  facto

rs 

0-20 76 37 x 

SG 

(2, 6) 1st deriv 

Mean 

center 0.86 0.359 5 

0.8

26 

0.8

21 0.356 

0-20 

(NWA

B) 76 37 x 

SG 

(2, 6) 1st deriv 

Mean 

center 0.86 0.359 5 

0.8

27 

0.8

22 0.354 

TLNS 75 36 x 

SG 

(2, 6) 1st deriv 

Mean 

center 0.87 0.458 5 

0.8

31 

0.8

26 0.41 

TLNS 

(NWA

B) 75 36 x 

SG 

(2, 6) 1st deriv 

Mean 

center 

0.86

6 0.464 4 

0.8

3 

0.8

25 0.405 

TFNS 75 36 x 

SG 

(2, 6)     0.81 0.557 8 

0.8

22 

0.8

16 0.432 

TFNS 

(NWA

B) 75 36 x 

SG 

(2, 6)   

Mean 

center 

0.81

6 0.547 9 

0.7

97 

0.7

91 0.469 

TFS 75 36 x 

SG 

(2, 6) 1st deriv 

Mean 

center 0.71 0.685 5 

0.7

04 

0.6

95 0.578 

TFS 

(NWA

B) 75 36 x 

SG 

(2. 3) 1st deriv 

Mean 

center 

0.71

6 0.681 7 

0.7

14 

0.7

06 0.588 

 

0-20: 0-20cm lab spectra model; (NWAB): NO water absorption bands; TLNS: topsoil 

lab spectra model without stones; TFNS: topsoil field spectra model without stones; 

TFS: topsoil field  spectra model with stone 

 

 

Table 5: calibration and validation of iron oxides prediction models 

0-20: 0-20cm lab spectra model; (NWAB): NO water absorption bands; TLNS: topsoil 

lab spectra model without stones; TFNS: topsoil field spectra model without stones; 

TFS: topsoil field  spectra model with stones 

spectral data data manipulation Calibration Validation

  training test 

R to 

Log 

(1/R) 

LS 

and 

BL 

corr 

De-

noising  Pretreatment R
2
CV RMSECV 

PLSR 

factors R
2
 R

2
adj RMSEV

0-20 76 37 x MSC   MC 0,151 0,871 4 0,285 0,265 

0-20 

(NWAB) 76 37 x MSC 

SG 

(2,10) MC 0,119 0,876 4 0,246 0,224 

TLNS 75 36 x MSC SG(2;10) MC 0,188 0,882 4 0,211 0,188 

TLNS 

(NWAB) 75 36 x MSC   MC 0,176 0,898 5 0,261 0,240 

TFNS 75 36 x MSC   MC 0,205 0,913 6 0,288 0,267 

TFNS 

(NWAB) 75 36 x MSC   MC 0,185 0,901 6 0,358 0,339 

TFS 75 36 x     MC 0,138 0,912 6 0,283 0,262 

TFS 

(NWAB) 75 36 x     MC 0,129 0,918 6 0,221 0,198 



 

Topsoil field no stones (TFNS) model 

without WAB was built including 9 

factors. It gave less error than the TFNS 

with WAB, but the latter one was built 

with 8 factors and, once validated, 

produced less error and higher R
2 

than the 

former one.  

TFNS without WAB received mean centre 

pre-treatment while TFNS with WAB was 

not pre-treated. 

Topsoil field stone (TFS) and TFS without 

WAB spectra, after receiving the same data 

manipulation, produced similar results both 

for calibration and for validation. TFS 

without WAB was built with 7 factors 

while TFS only with 5 factors (table 4). 

All the OC models developed produce 

quite good results. Models developed with 

spectra collected in  

the laboratories seem to be more accurate 

(lower RMSE) than the ones developed 

with field data. However, results obtained 

with models developed with field spectra 

assure a quite good level of prediction 

capacity, with R
2
 values both for 

calibration and for validation always > 0.7. 

 

3.1.1 Iron Oxides 

The models developed to predict Iron 

Content (table 5) didn’t produce as good 

results as OC prediction models.  

Calibration models produced similar 

accuracies for laboratories and field 

spectral data, with a RMSECV always 

lower than 1. 

Models developed with laboratory data 

were built with fewer factors than the one 

produced with field data. There are not 

significant differences between 

laboratories and field models produced 

considering or excluding WAB. Once 

validated, the models which produced the 

higher accuracies (lower RMSEV) were 

the ones produced in the field (the best 

Iron oxides prediction model is tfnos 

without WAB with a R
2
 of 0.358), 

indicating no differences when stoniness is 

a factor included in the data analyses (table 

5). In order to improve the prediction 

models accuracies, more analyses, 

selecting, for example, specific explaining 

wavelengths, need to be done  

 

 

 

 

3.1.2 Clay content 

The clay content prediction models 

production is at a preliminary stage. At the 

moment, we are not able to present the 

definitive results, due to difficulties 

encountered during the data analyses. 

  

4. Conclusions 

This study examines the possibility to 

predict topsoil and 0-20cm layer OC, Iron 

Oxides and Clay content combining field 

spectroscopy and PLSR techniques. 

The results of the chemical analyses 

indicate that topsoil and 0-20cm [OC] and 

[Fe] are correlated (Paerson´s correlation 

coefficient= 0.77 and 0.68, respectively) 

while for [clay]  there is very low 

correlation value (table 3). 

The mean soil spectra calculated 

demonstrated there are differences of 

reflectance values between soils measured 

with and without stones, indicating as 

stoniness should be considered as an 

important factor, especially in relation to 

the up-scaling process to airborne and 

space-borne hyperspectral data (figure 2).  

The PLSR models developed with 

laboratory and field spectra offered very 

good results for the prediction of OC 

(Calibration and validation R
2
> 0.7, 

RMSEV<0.6), and mediocre results for the 

[Fe] prediction (RMSEV always >0.55) 

(table 4 and 5). These results indicate that, 

for the STB, combining soil spectroscopy 

and PLSR, does favour an accurate 

prediction of OC, while further 

investigation need to be realized to 

improve Iron oxides prediction models. 
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